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are needed before solutions of large-scale chemically reacting,
viscous flowfields can be considered routine enough to be usedAn implicit algorithm for computing viscous flows in chemical

nonequilibrium is presented. Emphasis is placed on the numerical in other than a research environment.
efficiency of the time integration scheme, both in terms of per- This article represents the beginning of a research effort
iteration workload and overall convergence rate. In this context, designed to focus on ways to improve the numerical efficiency
several techniques are introduced, including a stable, 2(m2) approxi-

of algorithms for computing chemically reacting, viscous flow.mate factorization of the chemical source Jacobian and implementa-
The paper is outlined as follows. In Section 2, the governingtions of V-cycle and filtered multigrid acceleration methods. A five

species–seventeen reaction air model is used to calculate hyper- equations are briefly outlined and the discretization approach
sonic viscous flow over a cylinder at conditions corresponding to is described. The basic implicit time integration scheme, a
flight at 5 km/s, 60 km altitude and at 11.36 km/s, 76.42 km altitude. point Gauss–Seidel approach, is presented in Section 3. Several
Inviscid calculations using an eleven-species reaction mechanism

methods for the implicit treatment of the chemical source termincluding ionization are presented for a case involving 11.37 km/s
are outlined in Section 4, including a new 2(m2) approximateflow at an altitude of 84.6 km. Comparisons among various options

for the implicit treatment of the chemical source terms and among factorization approach (m is the number of chemical species).
different multilevel approaches for convergence acceleration are Section 5 describes the implementation of two multigrid
presented for all simulations. Q 1996 Academic Press, Inc. schemes, a V-cycle approach and a parallelizable ‘‘filtered’’

method, designed to accelerate the convergence of the baseline
reacting-gas solver. Several computations of two-dimensional1. INTRODUCTION
inviscid and viscous reacting flows at atmospheric re-entry
conditions are presented in Section 6 to illustrate the robustnessGeneral combustion mechanisms and hypersonic flows at
and efficiency of the developed algorithm.atmospheric re-entry conditions are examples of situations in

which the fluid of interest must be considered in terms of its
2. GOVERNING EQUATIONS AND DISCRETIZATIONmolecular constituents. The finite-rate chemical and thermody-

namic processes that provide for production/depletion of each
In terms of a curvilinear coordinate system defined by thespecies and for transfer of energy among internal modes must

steady transformation j 5 j(x, y), h 5 h(x, y) the expandedbe explicitly accounted for in the computation. In the most
Navier–Stokes set governing flows in thermo-chemical non-general continuum approach, an expanded Navier–Stokes set,
equilibrium can be written ascontaining separate transport equations for each species density

and each internal energy mode, must be solved. By assuming
equilibrium among all or some of the energy modes, one can 
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reduce the number of equations, but the resulting system is still
numerically ‘‘stiff ’’due to the presence of widely varying time
scales and can still be very large, depending on the complexity where U is the vector of conserved variables, Fj,h are the inviscid

fluxes, F v
j,h are the viscous fluxes, and ġ is the source vector.of the reaction mechanisms. With the advent of high-speed

computers, fully coupled solutions of flowfields in chemical In the above, J is the Jacobian of the transformation; 1/J is a
measure of the cell volume. Derivations of the terms withinand thermal nonequilibrium are now possible (see, for example,

[1–4]). However, well-resolved computations of complex re- the vectors have been presented in other references [5, 6]. A
detailed description will therefore be omitted, and only theacting-gas flow phenomena still tax the limits of the available

supercomputer technology, especially if three-dimensional sim- highlights of the current approach will be outlined.
Two reacting-air mechanisms are considered in this study.ulations are considered. Although large strides have been made,

it is clear that further improvements in algorithmic technology In the first, used for the viscous computations, separate species
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density equations are solved for O2 , O, N2 , N, and NO. The
H ; (Et 1 p). (5)

law of mass action is used to formulate appropriate source
terms describing the production or destruction of a particular

The contravariant Mach number M is given asspecies. As is commonly done, an Arrhenius form is adopted
for the forward reaction rates. Curve-fit coefficients for the
forward rates and the associated equilibrium constants are taken M 5

1
a

[k̃xu 1 k̃yv],
from Park [7]. Expressions for the species viscosities are taken
from Blottner [8], and thermal conductivities for each species

where a is the frozen speed of sound.are found by assuming an Eckert relation. The mixture viscosity
Following Refs. [12, 15], we define a compact form for theand thermal conductivity are determined using Wilke’s law [9].

interface flux F1/2 ; F c
1/2 1 F p

1/2 by considering the behavior ofThe diffusion velocities and the associated heat flux terms are
the convective and pressure components separately. The con-modeled by using Fick’s law. One diffusion coefficient, related
vective portion of the interface flux F c

1/2 is given byto the viscosity and density via the assumption of a constant
Schmidt number, is used for all species. Thermal equilibrium
at the translational temperature is assumed, and a harmonic F c

1/2 5
u=ku

J
[C 1F̃ c

L 1 C 2F̃ c
R], (7)

oscillator model is used to characterize the vibrational en-
ergy modes.

where for the Van Leer (Hänel) scheme,In the second reaction set, additional equations for the ionic
species O1

2 , O1, N1
2 , N1, and NO1 are solved, as is an equation

for the electron density. Charge exchange, associative ioniza-
C 1 ; C 1

VL 5 a1
L (1 1 bL)ML 2

bL

4
(ML 1 1)2 (8)tion, and electron-impact ionization reactions are also consid-

ered in the formation of the source terms [10]. The energy for
electronic excitation, assumed to be significant for O, O2 , and and
N, is modeled using a Boltzmann distribution of electronic
states again characterized by the translational temperature [3].

C 2 ; C 2
VL 5 a2

R(1 1 bR)MR 1
bR

4
(MR 2 1)2. (9)Viscous effects are neglected in the 11-species calculations.

The governing equations are discretized using a control vol-
ume approach. Viscous and diffusion terms are central-differ-

From these definitions, the AUSM representations for C 6 are
enced to second-order accuracy, while first-order upwinding

given as
based on flux vector splitting is used for the inviscid fluxes.
The AUSM [12, 13] flux-splitting technique is utilized for the

C 6 5 As(M1/2 6 uM1/2u), (10)5-species viscous calculations. For reasons outlined later, an
extension of the more dissipative Van Leer (Hänel) approach

where[14] is employed for the 11-species inviscid calculations. To
highlight the similarities and differences between the two flux-

M1/2 5 C 1
VL 1 C 2

VL . (11)splitting formulations, we first write the inviscid flux vector in
the kth coordinate direction (k 5 j, h) as a sum of convective

The functions a6 and b provide the correct sonic-point transi-and pressure contributions:
tion behavior [15]:

Fk ; F c 1 F p 5
u=ku

J
MF̃ c 1

u=ku
J

pF̃ p, (2)
a6

L,R 5 As[1 6 sgn(ML,R)], (12)

bL,R 5 2max[0, 1 2 int(uML,Ru)]. (13)where
r1a 0

For both schemes, the pressure contribution to the interface. .
. .

flux is defined as. .

rma 0
F̃ c 5 , F̃ p 5 ,

F p
1/2 5

u=ku
J

F̃ p[D1
L pL 1 D2

RpR], (14)rau k̃x

rav k̃y

where
aH 0

(3)3 4 3 4
k̃x,y 5

kx,y

u=ku
, (4) D6

L,R 5 a6
L,R(1 1 bL,R) 2

bL,R

2
(1 6 ML,R). (15)
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This expression corresponds to the simple pressure splitting and
defined in Ref. [12].

In each of the expressions above, the L and R notations B6 5 As(B 6 sBI),
represent the dependence of the quantity on the fluid properties
at left or right states about the interface. Unlike that of the Van where A and B are the inviscid flux Jacobian matrices corre-
Leer (Hänel) approach, the convective portion of the AUSM sponding to the j and h directions and sA,B are the associated
interface flux vanishes as ML and MR both approach zero, spectral radii. The scalar ds is given as
allowing the AUSM to capture shear layers quite accurately
[12]. A side effect of the AUSM convective-flux formulation

ds 5
1

J Dt
1 sA 1 sB , (17)(illustrated later) is the possibility of a nonmonotone capturing

of strong shock waves.

and W represents the Jacobian of the chemical source vector
3. DIAGONAL IMPLICIT APPROACH

The basic time integration scheme used in this investigation W 5 2
1
J

ġ
U

(18)
is the LU-SGS algorithm of Yoon and Jameson [16]. In its
perfect gas form, a diagonally dominant implicit operator based
on a point Gauss–Seidel matrix splitting is constructed so that Although not indicated in the above, ‘‘viscous’’ spectral radii
each lower–upper sweep only requires scalar diagonal matrix are added to their appropriate places within the implicit operator
inversions. The CPU time per iteration for the LU-SGS ap- [21]. Algorithm (16) is used as the smoother for the multigrid
proach is on the order of that of explicit schemes, and the procedures to be discussed later. Boundary conditions are ex-
technique is unconditionally stable for many perfect-gas prob- plicitly updated on the finest grid following Step 3 of (16).
lems. The requirement for diagonal dominance can lead to slow
convergence rates for viscous computations involving a high 4. SOURCE JACOBIAN APPROXIMATIONS
degree of mesh clustering. Nevertheless, the algorithm has been
successfully applied to low speed and high speed flows in two It is obvious that its use of scalar diagonal matrix inversions,
and three dimensions [17, 18]. Only a brief description of as opposed to block inversions, makes the LU-SGS approach
the basic LU-SGS approach, modified to include the implicit potentially attractive for solving the expanded reacting-gas Na-
treatment of the chemical source terms, is presented herein. vier–Stokes set. The key to the successful extension of the LU-
More detailed information regarding the construction of the SGS scheme lies in the implicit treatment of the chemical source
implicit operator may be found in [17, 19, 20]. terms, which account for the mass and energy transfer rates.

Given that Dj and Dh are equal to unity, the LU-SGS proce- Several methods for considering these terms have appeared in
dure for advancing the solution vector U from time levels k to the recent literature. Shuen and Yoon [20] and Park and Yoon
k 1 1 is as follows: [22] linearize the source terms corresponding to the species

continuity equations with respect to the species densities (or
Step 1. Lower sweep:

mass fractions). The resulting m 3 m Jacobian matrix (W in
Eq. (18)) is inverted directly at every grid point to yield correc-

dU*i, j 5 (dsI 1 W)21
i, j [2^i, j 1 A1

i21, jdU*i21, j 1 B 1
i, j21dU*i, j21] tions for the species densities. Scalar diagonal inversions are

used for the remainder of the equation set. The work per itera-
tion for the LU-SGS algorithms of [20, 22] is further reducedStep 2. Upper sweep:
by only performing the matrix inversion within the lower sweep.
For this situation, (dsI 1 W)21 in the upper sweep of (16) woulddUi, j 5 dU*i, j 2 (dsI 1 W)21

i, j [A2
i11, jdUi11, j 1 B 2

i, j11dU i, j11] (16)
simply be replaced by the scalar inversion (dsI)21. Most of the
calculations presented herein employ this convention; cases

Step 3. Update: requiring source Jacobian inversions in both sweeps will be
especially noted in Section 6.

U k11
i, j 5 U k

i, j 1 dUi, j . A simpler approach for ‘‘diagonalizing’’ the source term
Jacobian within the LU-SGS framework has been implemented

In the above, ^i, j represents the discretized residual (or col- and tested by Eberhardt and Imlay [4]. In this method, a ‘‘time
lected defect error for the multigrid procedures) evaluated at scale’’ for each reaction is defined by taking the L2 norm of
point i, j. The split Jacobian matrices A6 and B6 are defined the appropriate row elements within the source Jacobian. In
as particular, if Wk,l represents an element of the source Jacobian

described above, the Eberhardt and Imlay scalar diagonal matrix
is given byA6 5 As(A 6 sAI)
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where
diag Fds 1

1
t1

, ds 1
1
t2

, ..., ds 1
1
tm

, ds , ds , ds], (19)

uT
i 5 [W1,i , ..., Wi21,i , 0, Wi11,i ..., Wm,i] (24)

where
and

vT
i 5 [0, ..., 0, 1(ith place), 0, ..., 0]. (25)1

tk
5 b !Om

l51

(Wk,l)2 (20)

The product (dsI 1 W)21b is then approximated by successive
multiplications of the rank-one matrices defined in (23). EachThis formulation always adds to the diagonal dominance of the
multiplication is 2(m) since d̃ is a scalar diagonal matrix, mak-LU-SGS implicit operator and thus will always underrelax the
ing the overall cost 2(m2). For large m, this scheme shouldeffects of the chemical source term. Candler and Olynick [23]
provide savings over the direct LU decomposition approachhave observed that element nonconservation and generally poor
(2(m3)). The stability of the approach will depend strongly uponconvergence behavior can result if b is not chosen properly.
the magnitudes of the elements of W, the ordering of the speciesThey propose an alternative linearization that maintains elemen-
continuity equations (O2 , O, N2 , N, NO, [O1

2 , O1, N1
2 , N1, NO1,tal conservation and leads to better numerical behavior.

e2] for this work), and the magnitude of ds . It is clear that thisAn alternative approach for approximating the source Jacob-
approach will not necessarily maintain diagonal dominance, asian inversion, somewhere between the Shuen–Yoon and Eber-
does the Eberhardt–Imlay approach, but it will provide a closerhardt–Imlay methods in complexity, can be derived by first
approximation to the actual matrix inversion. For the casesrealizing that the following steps must be taken (or approxi-
considered herein, computational experiments have shown thatmated in some fashion) to provide a solution update at every
the use of an appropriately defined underrelaxation parametergrid point (b represents the terms within the square brackets
a renders the scheme as stable as the direct inversion approach.of algorithm (16)):
The choice of a used for the results presented in this work is

Step 1.

a 5 1.0 2 0.4 min(1.0, C), (26)
Dr1 b1

where the local Damköhler number C is defined byDr2 b2

. 5 (dsI 1 W)21 . ,

. .

. .
C 5

Lref max(uġku, k 5 1, m)

ryUy
. (27)

Drm bm

3 4 3 4
The results presented later using this approach are preliminaryStep 2.
but are very encouraging. Incidentally, a similar ‘‘approximate
inverse’’ can be constructed by considering each row of W as
a rank-one perturbation. This approach was tried but was found3

Dru

Drv

DEt
45

1
ds 3

bm11

bm12

bm13
4. (21)

to be almost unconditionally unstable.

5. MULTIGRID APPROACH
The second step of (21) is trivial; we attempt, therefore, to

The second part of this article involves an evaluation of thefind a less-costly way of obtaining the matrix–vector product
effectiveness of multigrid methods as means of accelerating the(dsI 1 W)21b. This can be accomplished by approximately fac-
convergence of the implicit reacting-gas solver. The multigridtoring this system in terms of the diagonal matrix
‘‘philosophy’’ is based on the fact that most commonly used
iterative schemes for solving grid-discretized partial differentiald̃ 5 diag[ds 1 W1,1 , ds 1 W2,2 , ..., ds 1 Wm,m] (22)
equations are adept at smoothing or eliminating only certain
ranges of high frequency error components. Low frequencyand the off-diagonal columns of the source Jacobian W.
errors are generally not damped, resulting in slow convergenceThe result, obtained by applying the Sherman–Morrison theo-
rates for fine grids. On a coarser grid, formed perhaps fromrem [24] to each factor, is given by the following product of
the removal of every other fine-grid line in all coordinate direc-rank-one matrices,
tions, the fine-grid low frequency errors are resolved as higher
frequencies. Smoothing passes on the coarse grid can effectively
damp these frequencies, generating a ‘‘coarse-grid correction’’(dsI 1 W)21 P Fpm

i51

(I 2 ad̃ 21u ivT
i )G d̃21, (23)

to the low frequency spectrum. The recursive application of this
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technique on successively coarser grids, known as a ‘‘multigrid is computed on the finest level and is restricted to the coarser
levels by injection.cycle,’’ can in principle eliminate all error modes, dramatically

accelerating convergence. The effectiveness of multigrid is di- To enhance the performance of both schemes in computing
flows with strong shock waves, a slight modification to therectly related to how well the basic iterative scheme attenuates

the high-frequency errors resulting from the interpolation of error calculation procedure at each grid level is made. Given
that r̃ represents a restriction operator, Nk represents the implicitthe coarse-grid corrections to the finer grids.

The full approximation-storage (FAS) concept of Brandt [25] smoothing operation on grid level k, and that 5(Uk) is the
Navier–Stokes residual at level k, the following sequence ofprovides a means of generalizing the multigrid idea to nonlinear,

nonelliptic problems. The utility of FAS-based multigrid meth- operations is performed within the FAS V-cycle: (p̃ represents
the prolongation operator):ods in solving the Navier–Stokes equations for subsonic and

transonic flow problems has been well-documented [26, 27].
Step 1. Restrict solution values from levels k 2 1 to k,

Several recent efforts, [28–30] for example, have focused on
developing multigrid techniques for computing supersonic and

Uk 5 r̃ [Uk21]hypersonic viscous flowfields, with varying degrees of success
having been reported. In general, though, it appears that most

Step 2. Smooth to determine correction (^k21 is the col-current multigrid approaches for computing high-speed flows
lected error at the previous grid level),are more labor-intensive than their low-speed counterparts. This

is primarily the result of additional smoothing needed to reduce
solve: Nk dUk 5 r̃ [^k21]high-frequency errors in the vicinity of strong shock waves

and the use of complicated cycling strategies and grid transfer
Step 3. Calculate residual error at level k,operators. To this author’s knowledge, only one multigrid-

based algorithm for computing hypersonic, chemically reacting
flows has been documented in the literature [31]. The primary ^k 5 r̃ [^k21] 2

1
«

(5(Uk 1 « dUk) 2 5(Uk)) (29)
conclusion from the obtained inviscid results was that the per-
formance of multigrid is relatively unaffected by chemical reac-

Step 4. Restrict residual error ^k to next coarsest level andtions but is strongly dependent on the hyperbolic nature of
continue cycling processthe problem.

Step 5. Sum corrections at grid level k,In this investigation, the implicit algorithms outlined earlier
are used as smoothers for a V-cycle FAS multigrid approach

dUk 5 dUk 1 p̃[dUk11].and for a filtered multigrid scheme [32, 33]. The underlying
coarse grids (three in this investigation) are determined by
successively removing each fine grid line in both coordinate The term in parentheses within Step 3 represents a Frechét

derivative approximation to the matrix–vector productdirections (full coarsening). Fairly standard grid-transfer opera-
tors are employed for both approaches. As the basic discretiza- (5/Uk)dUk . As « becomes small, the accuracy of the approxi-

mation increases and the residual error calculation approachestion approximates a cell-vertex scheme in 2D, the restriction
of the fluid properties to the coarser grids is accomplished via that of a linear multigrid method. As « approaches unity, the

standard FAS scheme is recovered. The effect of « , 1 is tosimple injection. A conservative restriction of the residual error
is achieved by a weighted summation of the fine-grid values: minimize the direct effects of large coarse-grid solution

changes, which result from the combination of strong discon-
tinuities and low resolution levels. This simple correction seemsr̃ [^ic, jc] 5 ^i, j
to obviate the need for the extra smoothing steps and compli-1 As(^i,j11 1 ^i, j21 1 ^i11, j 1 ^i21, j) (28)
cated initialization procedures found in some ‘‘hyperbolic’’1 Af(^i11, j11 1 ^i11, j21 1 ^i21, j11 1 ^i21, j21).
multigrid algorithms. For the blunt body calculations presented
herein, it has been found that the choice of « 5 1.0 is clearly

Values at the fine grid nodes i, j, etc. can be accessed from the nonoptimal in the transient stages of the iteration sequence. As
coarse grid nodes ic, jc by the rule convergence is approached, however, the performance of the

schemes varies little for « ranging from 1.0 to 1026.
i, j 5 2ic 2 1, 2jc 2 1. The filtered multigrid algorithm was developed by Chan and

Tuminaro [31] as a means of efficiently utilizing processors of a
distributed memory architecture. At each grid level of a standardThe prolongation operator for transferring the coarse-grid cor-

rections to the next finest grid is simple bilinear interpolation. multigrid approach implemented on such a machine, the number
of grid points decreases, leading to an unavoidable reductionOnly one implicit smoothing pass per coarse-grid level is per-

formed for the V-cycle approach, and post-smoothing of residu- in parallel efficiency as processors become idle. The filtered
multigrid method avoids this deficiency by constructing multi-als or corrections is not utilized. The source Jacobian ġ/U
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ple subproblems at each grid level via a frequency decomposi- The ‘‘oscillatory’’ component is obtained by subtracting the
‘‘smooth’’ component from the original residual error:tion. Previously idle processors can then be used to solve the

subproblems concurrently.
In the current approach, two subproblems per grid level

^ o
k 5 ^k 2 ^ s

k (32)are created by splitting the residual error (^k in (29)) into
‘‘oscillatory’’ and ‘‘smooth’’ components. The ‘‘oscillatory’’
component is smoothed again on the current grid level, while In general, the filtered multigrid approach with Tuminaro’s
the ‘‘smooth’’ error component is restricted to coarser grids. frequency decomposition converges better than the simple V-
Like the standard V-cycle approach, the process is recursive, cycle strategy. However, as illustrated later, it is also subject
and the smoothing and filtering operations are repeated on each to a degradation in convergence when highly clustered meshes
coarser grid. The total coarse-grid correction at each grid level are used. Quite by accident, it was discovered that the perfor-
is found by summing the corrections generated by the solutions mance of the filtered multigrid scheme could be substantially
of the ‘‘oscillatory’’ and ‘‘smooth’’ subproblems. The filtered improved by weighting the frequency decomposition so as to
multigrid analogue of algorithm (29) is as follows: overrelax the smooth component of the residual error:

Step 1. Restrict solution values from levels k 2 1 to k,

^ s
k 5

g
4

p̃[r̃ [^k]] (33)Uk 5 r̃ [Uk21]

Step 2. Smooth to determine correction (^ s
k21 is the col- ^ o

k 5
1

2 2 g
(^k 2 ^ s

k), (34)
lected ‘‘smooth’’ error at the previous grid level),

1 # g , 2solve: Nk dUk 5 r̃ [^s
k21]

Step 3. Calculate residual error at level k, The net effect of this procedure is to ‘‘overcorrect’’ lower
frequency error modes that are either not damped by the
smoother or are approximated poorly on the coarser grids. In^k 5 r̃ [^ s

k21] 2
1
«

(5(Uk 1 « dUk) 2 5(Uk)) (30)
a recent article, Brandt and Yavneh [34] discuss the use of
residual overrelaxation to alleviate multigrid convergence deg-

Step 4. Filter ^k into ‘‘oscillatory’’ and ‘‘smooth’’ radation associated with anisotropic advection–diffusion opera-
subproblems ^ o

k and ^ s
k tors. Among other things, they conclude that extra smoothing

passes are needed to prevent the overcorrection from adverselyStep 5. Smooth ^ o
k again on the current level:

affecting error components that are resolved and attenuated
effectively. Such extra smoothing is provided naturally by Stepsolve: Nk dU o

k 5 ^ o
k

5 of (30). Note that the Tuminaro decomposition is a special
case (g 5 1) of the ‘‘overrelaxed’’ decomposition presentedStep 6. Restrict ‘‘smooth’’ residual error ^ s

k to next coarsest
above. Except for the g 5 1 case, ^ s

k and ^ o
k do not sum tolevel k 1 1 and continue cycling process

produce the original residual error. Both ‘‘smooth’’ and ‘‘oscil-
Step 7. Sum corrections at grid level k: latory’’ error components are always present on the finer grid

after the decomposition and are damped accordingly.
dUk 5 dUk 1 dU o

k 1 p̃[dUk11]. Both of the multilevel algorithms are implemented in the
context of a ‘‘full multigrid’’ (FMG) initialization strategy. The

In addition to the V-cycle workload, the filtered approach FMG procedure starts on the coarsest mesh, where the basic
requires one additional implicit smoothing step per grid level. diagonal implicit scheme is used to solve the problem to a
A suitable filtering operation must also be performed to split specified tolerance. The solution is then interpolated to the next
the residual error. The key to the performance of the method finest mesh and is improved by the application of a number of
is the behavior of the filter, which should separate out high- two-level multigrid cycles. The process is repeated, each time
frequency modes but not damp the underlying low frequency increasing the number of grid levels used in the multigrid
components. In Tuminaro’s approach [32], the ‘‘smooth’’ com- cycling. After the interpolation to the finest level, the procedure
ponent of the error on each grid level is obtained by first reverts to the standard cycling strategy. The use of the FMG
restricting the residual error to the next coarsest mesh and then procedure has proved essential for the rapid computation of
bilinearly interpolating the restricted values to the finer grid: the blunt-body flowfields, as high-frequency errors due to the

movement and formation of the normal shock are rapidly ex-
^ s

k 5 Afp̃[r̃ [^k]]. (31) pelled by iterations on the coarser meshes.



90 JACK R. EDWARDS

6. RESULTS

Three test cases involving hypersonic flow over a one meter
radius 2D cylinder are considered as means of evaluating the
performance of the implicit reacting-gas flow solver. Two 65 3
113 grids, one uniformly spaced in the radial direction for Euler
calculations and one with clustering to the cylinder surface
(Drmin 5 8 3 1025 m) for Navier–Stokes calculations, are con-
sidered (see Fig. 1). All computations are initialized by fixing
the freestream fluid properties in the interior of the domain to
their postnormal shock (perfect gas assumption) values. With
this approach, the shock forms at the outer boundary and moves
toward the cylinder until a steady position is reached.

To indicate convergence, the +2 norm of the discretized fine-
grid residual is plotted versus Cray Y-MP single-processor
CPU time. The residual +2 is normalized with respect to the

FIG. 2. Stagnation line pressure and temperature distributions (5-speciesmaximum of its initial value and the value obtained after the
Navier–Stokes; 5 km/s, 60 km).

coarse-grid steps of the FMG procedure. In this way, the level
of fine-grid error reduction corresponding to the FMG initializa-
tion can be directly ascertained. The time for the FMG initializa-

6.1. Five-Species Viscous Calculations (5 km/s, 60 km)tion is indicated by a shift in the fine-grid residual curves. At
each coarse-grid stage of the FMG procedure, a two order-of- Conditions for the first test case correspond to a 5 km/s flight
magnitude residual reduction is required before proceeding to at an altitude of 60 km. Freestream mass fractions are given
the next level. The number of fine-grid cycles required for as follows: CN2

5 0.78, CO2
5 0.22, CO 5 CN 5 CNO 5 1 3 1025.

convergence is also listed on the convergence plots. These do A fixed wall temperature of 12738K is enforced, and the wall
not represent an equal amount of work—one four-level V-cycle is assumed to be noncatalytic. For all simulations, the nondi-
is roughly 2.15 times as expensive as a single-grid iteration, and mensional time step Dt is allowed to increase from an initial
one filtered multigrid cycle is about 1.18 times as expensive value of 0.01 to a final value of 0.0667 in proportion to a
as a V-cycle. decrease in the normalized residual. All calculations (including

the single-grid one) are initialized using the FMG procedure
to provide a fair comparison.

Stagnation-line pressure and temperature distributions pro-
vided by the AUSM discretization are illustrated in Fig. 2.
The AUSM approach, even in its first-order implementation,
converges to a nonmonotone pressure solution. Other features
of note include the temperature relaxation behind the strong
normal shock wave and the rapid decrease in temperature within
the thin thermal boundary layer. Species mass fraction distribu-
tions along the stagnation line are shown in Fig. 3. At these
conditions, the dissociation of N2 is incomplete, with some
recombination occurring within the boundary layer as a result
of the rapid temperature drop. Oxygen dissociation proceeds
almost to completion. Comparisons of the AUSM stagnation-
line results with those of other discretizations may be found in
Ref. [35].

The effects of the choice of cycling strategy on the conver-
gence of the 5 km/s Navier-Stokes simulation are shown in
Fig. 4. For this particular comparison, the direct inversion (DI)
approach for the source Jacobian is utilized exclusively. As
evidenced, the convergence rates for all approaches, multilevel
or single-grid, start to degrade after about a three order-of-
magnitude reduction in the residual. This behavior is probably
the result of inadequate damping or expulsion of high frequency

FIG. 1. Grid for Navier–Stokes computations (65 3 113). errors, both within the well-resolved viscous layer and in the
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formance occurring around g 5 1.5. Again, this improvement
appears to result from the combination of additional high-
frequency smoothing steps with an ‘‘overcorrection’’ procedure
for poorly resolved error components. Above the g 5 1.5 point,
the implicit smoothing steps are unable to effectively attenuate
the high-frequency errors resulting from the overrelaxation, and
oscillatory behavior in the residual norm is observed. This
process is reminiscent of SOR acceleration of a Gauss–Seidel
procedure in that an ‘‘optimal’’ g . 1 usually exists for a
particular problem, but the actual value must be determined by
trial and error.

Figure 5 illustrates the effect of the source Jacobian approxi-
mations on the convergence of the filtered multigrid method.
An overrelaxation factor of g 5 1.5, corresponding to the
‘‘optimal’’ value for the DI approach, is utilized for all simula-
tions. As shown, the columnwise approximate factorizationFIG. 3. Stagnation line mass fractions (5-species Navier–Stokes; 5 km/s,
(AF) procedure converges slightly slower than the direct inver-60 km).
sion technique in terms of number of cycles. For this case, the
per-iteration CPU improvement provided by the approximate
factorization procedure is minimal, an effect due primarily to

vicinity of the normal shock wave. In regions of heavy mesh the small size (m 5 5) of the source Jacobian and to the fact
clustering, the inviscid and viscous spectral radii within (16) that the direct factorization is performed only once per grid
and (17) remain large, acting to decrease the effective time level and is then stored. The Eberhardt–Imlay (EI) procedure
step and thus to underrelax the obtained corrections. The non- converges much more slowly but in a more monotone fashion.
monotone behavior of the AUSM scheme near the normal shock This behavior is consistent with the nature of the approximation,
wave may also influence the convergence behavior by providing which will always maintain diagonal dominance and will al-
a source for high-frequency errors that remain undamped ways underrelax the effect of the chemical source terms. It is
throughout the iteration. The V-cycle convergence rate suffers possible that the poor relative performance of this method may
the worst from these factors, leveling out at the single grid rate again be related to the small size of the source Jacobian. For
after about a 3.5 order-of-magnitude residual reduction. The larger reaction sets, the 2(m) cost of the EI method may some-
filtered multigrid method using Tuminaro’s decomposition what offset its larger factorization error. It is also possible
(g 5 1) performs significantly better, converging approxi- that optimal filtered multigrid performance for the EI and AF
mately 2.5 times faster than the single-grid iteration. Further procedures occurs at values of g different from that of the
improvements in the convergence rate are evidenced as the DI approach.
overrelaxation parameter g is increased, with the optimal per-

FIG. 4. Effect of cycling strategy on convergence (5-species Navier– FIG. 5. Effect of source Jacobian approximations on convergence
(5-species Navier–Stokes; 5 km/s, 60 km).Stokes; 5 km/s, 60 km),
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FIG. 6. Stagnation line pressure and temperature distributions (5-species FIG. 7. Stagnation line mole fractions (5-species Navier–Stokes; 11.37
km/s, 76 km).Navier–Stokes; 11.37 km/s, 76 km).

6.2. Five-Species Viscous Calculation due to chemical reaction take place within the coarse-grid cy-
(11.37 km/s, 76.42 km) cling process. From the end of the initialization, the same

general trends found in the 5 km/s simulation are evidenced.The second test case considered in this investigation involves
Operating at its optimal overrelaxation factor (g 5 1.5), the11.37 km/s flow over the same cylinder at an altitude of 76.42
filtered multigrid approach using the DI procedure again pro-km. These conditions correspond directly to those experienced
vides a threefold improvement in time to convergence, relativeby the Project Fire II re-entry vehicle 1634 s into its launch
to the single-grid iteration. In contrast to the 5 km/s simulation,[36]. For this case, the wall temperature is set to 6158K, a
the asymptotic multigrid convergence rate does not degradenoncatalytic assumption is again enforced, and the AUSM dis-
significantly, a possible consequence of the nearly monotonecretization is employed. The assumption of thermal equilibrium
capturing of the normal shock wave for these conditionsis clearly invalid at the Fire II conditions; the speed of the
(Fig. 6).vehicle is also high enough to result in significant ionization.

For this case, the columnwise AF procedure converges inFor the purposes of this paper, the inexactness of the physical
fewer cycles than the DI approach. As before, however, themodeling is not seen to be a significant weakness; the extreme
per-iteration CPU difference between the two methods is notconditions of the Fire II reentry serve only to test the robustness
substantive enough to result in a significant improvement inand efficiency of the ideas presented herein.

Computed stagnation line pressure, temperature, and mole
fraction distributions for this case are illustrated in Figs. 6 and 7.
The extreme increase in temperature through the normal shock
(Fig. 6) results in the complete dissociation of O2 and N2 . Only
a slight amount of NO is present, as most quickly dissociates
into its atomic components. Some recombination of N into N2

occurs within the boundary layer (Fig. 7). For this case, the
source Jacobian inversion procedure is performed within both
sweeps of the LU-SGS algorithm. With this modification, the
nondimensional time step could be increased to a final value
of 0.2.

Convergence histories for the 11.37 km/s simulation are
shown in Fig. 8. Only the results from the filtered multigrid
method are shown, as the V-cycle approach was found to be
unstable at the time step considered. The Eberhardt–Imlay
source Jacobian approximation also failed at the test conditions.
Of particular note in the figure is the large amount of error
reduction (p1.25 orders-of-magnitude) corresponding directly FIG. 8. Effect of source Jacobian approximations and grid refinement on

convergence (5-species Navier–Stokes; 11.37 km/s, 76 km).to the FMG initialization. It seems that most of the rapid changes
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overall time to convergence. Also shown in the figure is a
convergence history corresponding to a calculation on a 129 3
129 grid using the DI technique. The algorithm actually con-
verges in fewer cycles on the finer grid than on the coarser
grid, an effect possibly due to a more adequate resolution of
the shock structure.

6.4. Eleven-Species Inviscid Calculation
(11.37 km/s, 84.6 km)

The final test case considered in this study involves 11.37
km/s inviscid flow over the cylinder at an altitude of 84.6 km.
These conditions correspond to the 1631 s point in the Fire II
trajectory [36]. For this simulation, the 11-species reacting-air
model with ionization is utilized. At this altitude, viscous and
noncontinuum effects are important, and the translational, rota-
tional, vibrational, and electron–electronic internal energy FIG. 10. Stagnation line mole fractions (11-species Euler; 11.37 km/s,

85 km).modes do not equilibrate at a common temperature, except very
near the cylinder surface [37]. The assumption of inviscid flow
characterized by one temperature is therefore quite inadequate,
but again, the focus at this point is more toward examining the severe thermal gradients in the vicinity of the shock, the
numerical performance of the developed algorithm for a large, less-dissipative AUSM discretization failed to give acceptable
stiff equation set than toward the physical modeling of reen- multigrid convergence for this problem. For this case, source
try flows. term inversions are performed within both sweeps of the

Figure 9 shows the computed temperature and pressure along LU-SGS procedure, allowing a final nondimensional time
the stagnation line. The effects of viscous layer displacement step of 0.1 to be achieved. Compared with the direct approach
and a higher free-stream density notwithstanding, it is apparent for the source Jacobian inversion, the columnwise AF proce-
from a comparison with Fig. 6 that the inclusion of ionization dure provides only a 7.4% improvement in per-cycle effi-
promotes a smaller shock-standoff distance and a lower temper- ciency, as the size of source Jacobian is still relatively small.
ature in the shock layer. The kinetic energy of the free-stream However, the AF approach converges in fewer iterations
flow is absorbed in electronic and vibrational excitation as (132 as compared with 154 for the direct method), leading
well as in the formation of neutral and ionic reaction products to an overall improvement in time to convergence of over
(Fig. 10). 18%. This behavior, consistent with that evidenced in the

Filtered multigrid convergence histories using the Van Leer second test case, may indicate a tendency of the approximate
(Hänel) splitting are shown in Fig. 11. Due perhaps to the procedure to underrelax the strong nonlinearities due to

FIG. 11. Effect of source Jacobian approximations on convergenceFIG. 9. Stagnation line pressure and temperature distributions (11-species
Euler; 11.37 km/s, 85 km). (11-species Euler; 11.37 km/s, 85 km).
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